# Cylinder Positioner IP200 Series

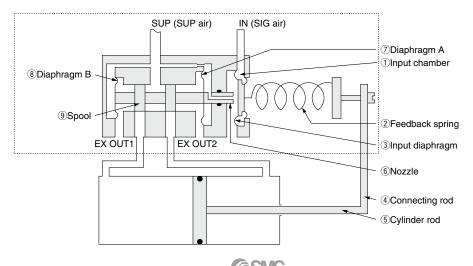
- Servo-mechanism allows precise and stable position control of cylinders.
- Can be used as a cylinder position control unit for general industrial machines.



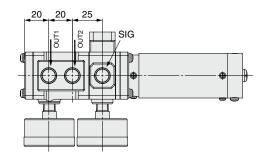
\* Manufacture of strokes in 1 mm increments is possible.

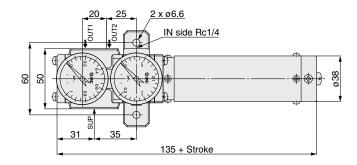
#### Specifications (No load) Note 1)

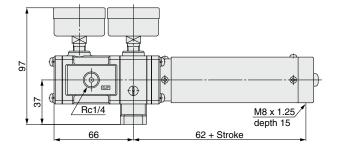
| Supply pressure                        | 0.3 to 0.7 MPa                         |
|----------------------------------------|----------------------------------------|
| Input pressure                         | 0.02 to 0.1 MPa                        |
| Applicable bore size                   | ø50 or more                            |
| Applicable stroke                      | 25 to 300 mm or less                   |
| Sensitivity Note 2)                    | Within 0.5% F.S.                       |
| Linearity Note 2)                      | Within ±2% F.S.                        |
| Hysteresis Note 2)                     | Within 1% F.S.                         |
| Repeatability Note 2)                  | Within ±1% F.S.                        |
| Air consumption Note 3)                | 18 L/min (ANR) or less (SUP = 0.5 MPa) |
| Influence by change in supply pressure | Within 1% F.S./0.05 MPa                |
| Ambient and fluid temperature          | −5°C to 60°C                           |
| Port size                              | Rc1/4 (Gauge port Rc1/8)               |
| Weight                                 | Approx. 700 g (at 100 mm stroke)       |
|                                        |                                        |

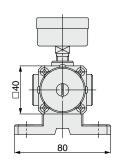

#### **Replacement Parts**

| Part no. | Description      | Note                                       |
|----------|------------------|--------------------------------------------|
| IP200-02 | Pilot valve unit |                                            |
| 39020-23 | Seal kit         | Ambient temperature: Standard (-5° to 60°) |


- Note 1) Specification values are given at normal temperature (20°C).
- Note 2) Characteristics relating to accuracy differ depending on combination with other constituent loop equipment, such as positioners and actuators.
- Note 3) Air consumption is due to exhaust from nozzle. And (ANR) indicates JIS B0120 standard air.


#### **Construction/Principle of Operation**


When signal pressure enters input chamber ①, the input diaphragm ③ is deflected left. Clearance of the nozzle ⑥ is reduced causing higher back pressure at diaphragm A ②. This diaphragm A ② has larger area than diaphragm B ⑧ resulting in movement of the spool to the left. Supply pressure then flows to OUT1 ① and partial exhaust from OUT2 takes place resulting in cylinder rod ⑤ movement to the right. The movement is linked via connecting rod ④ and feedback spring ② to the input diaphragm ③ balancing the higher pressure. When this occurs nozzle ⑥ clearance increases allowing centralizing of the spool ⑨ to take place. This holds the piston rod in the new position. Input signal increase results in proportional movement of the piston rod.




#### **Dimensions**









## **⚠** Precautions

#### Caution

### **⚠** Caution

- 1. As the positioner contains extra-fine orifices such as restrictor and nozzle, if drain or dust is present in the supply pressure line, malfunction (\*1) may result. In addition to an air filter (SMC AF series), it is recommended to use a mist separator (SMC AM, AFM series) and a micro mist separator (SMC AMD, AFD series).
  - Also, refer to "SMC Air Preparation System" for air quality.
- 2. Never use a lubricator, as this can cause a malfunction (\*1).
- 3. Be sure to flush the piping to prevent foreign matter from entering the positioner before connecting them.
- \*1 If the restrictor is clogged, the cylinder rod may not perform a stroke or hunching and overshoot may occur.

